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ABSTRACT 39 

This study examines further the characteristics of turbulent flow in the low-level region of 40 

intense hurricanes using in-situ aircraft observations. The data analyzed here are the flight-level 41 

data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo 42 

(1989), Category 4 Hurricane Allen (1980) and Category 5 Hurricane David (1979) between 1 43 

km and the sea surface. Estimates of horizontal eddy momentum flux, horizontal eddy diffusivity 44 

and horizontal mixing length are obtained. It is found that the horizontal momentum flux and 45 

horizontal diffusivity increase with increasing wind speed. The horizontal mixing length 46 

increases slightly with wind speed also, but the mixing length is not significantly dependent on 47 

the wind speed. The magnitude of the horizontal momentum flux is found to be comparable to 48 

that of the vertical momentum flux, indicating that horizontal mixing by turbulence becomes 49 

non-negligible in the hurricane boundary layer, especially in the eyewall region.   50 

Within the context of simple K-theory, the results suggest that the average horizontal eddy 51 

diffusivity and mixing length are approximately 1500 m2 s-1 and 750 m, respectively, at ~500 m 52 

in the eyewall region corresponding to the mean wind speed of approximately 52 m s-1.   It is 53 

recalled also that the mixing length is a virtual scale in numerical models, and is quantitatively 54 

smaller than the energy-containing scale of turbulent eddies. The distinction between these two 55 

scales is a useful reminder for the modeling community on the representation of small-scale 56 

turbulence in hurricanes.   57 

Key words: Hurricane, typhoon, boundary layer, turbulent fluxes, spectra, horizontal eddy 58 

diffusivity, horizontal mixing length  59 

 60 

 61 

 62 
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1. Introduction 63 

Turbulent transport processes in the boundary layer are believed to play an important role in 64 

the intensification and maintenance of a tropical cyclone (e.g., Emanuel 1995, Emanuel 1997, 65 

Wroe and Barnes 2003, Persing and Montgomery 2003, Smith et al. 2008, Davis et al. 2008, 66 

Bryan and Rotunno, 2009, Rotunno et al. 2009, Smith et al. 2009, Smith and Montgomery 2010, 67 

Montgomery and Smith 2011). The reason is in part because boundary layer turbulent fluxes 68 

modulate the uptake of enthalpy from the ocean and the loss of absolute angular momentum into 69 

the ocean. Because the horizontal grid spacing of current operational numerical models (> 3 km) 70 

for hurricane simulation and forecast is generally much larger than the scales of turbulent eddies 71 

(100 – 1000 m), the turbulent transport of energy and momentum have to be parameterized. In 72 

order to link turbulent quantities to mean variables it is standard to use the so called sub-grid 73 

scale parameterization schemes, such as the surface layer and planetary boundary layer (PBL) 74 

schemes in numerical models.  75 

   The parameterization of turbulent flux in the atmospheric boundary layer is often 76 

achieved through a simple eddy diffusivity closure model, also called “K-theory” (e.g., Eliassen 77 

1971, Eliassen and Lystad 1977, Braun and Tao 2000, Kepert and Wang 2001, Holton 2004, 78 

Nolan et al. 2009 a, b, Foster 2009, Smith and Thomsen 2010).  In low wind conditions, the 79 

horizontal momentum flux is usually assumed to be much smaller than the vertical momentum 80 

flux (e.g., Malkus and Riehl 1960). For this reason, vertical transport of turbulent momentum 81 

flux has received more attention in the boundary layer community than the horizontal transport.  82 

There have been extensive studies on the vertical transport of momentum and heat in low to 83 

moderate wind speed conditions (e.g., Hanna 1968, O’Brien 1970, Troen and Mahrt 1986, Hunt 84 

1985, Hotslag and Moeng 1991, Lee 1996, Noh et al. 2003).  Nonetheless, observational data are 85 
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scarce under major hurricane conditions, and the quantitative value and variation with wind 86 

speed of the vertical and horizontal eddy diffusivities remain poorly understood.    87 

Using the data from the periods of eyewall penetrations in the intense Hurricanes Hugo 88 

(1989) and Allen (1980), Zhang et al. (2011a, ZM11 hereafter) obtained the first estimate of 89 

vertical momentum flux and the corresponding vertical eddy diffusivity in the inflow layer in 90 

intense hurricanes. These authors found that the vertical eddy diffusivity is on the order of 100 91 

m2 s-1 at ~ 500 m in the intense eyewall with flight-level mean wind speed up to 65 m s-1. They 92 

found also that the vertical eddy diffusivity increases with increasing wind speed at a similar 93 

altitude.  94 

   It was not until relatively recently that horizontal momentum diffusion was suggested to be 95 

an important element in both the theory and numerical simulation of hurricane intensification 96 

and the maximum possible intensity (Emanuel 1989, 1997; Bryan and Rotunno 2009, BR09 97 

hereafter; Bryan et al. 2010).  In particular, using an axisymmetric numerical cloud model the 98 

latter authors demonstrated that the maximum intensity of their simulated hurricanes was very 99 

sensitive to the configuration of horizontal mixing length. It is of interest to note at this point that 100 

no previous study has given the value of horizontal mixing length based on observational data 101 

under hurricane conditions. 102 

    The purpose of this paper is to extend the ZM11 study by providing new estimates of the 103 

horizontal diffusivity and mixing length in the hurricane boundary layer for major hurricanes.  104 

Again, we use the data in Hurricanes Hugo (1989) and Allen (1980). In addition, we analyze 105 

another dataset which was collected in the low-level region of Category 5 Hurricane David 106 

(1979). In order to provide useful guidance to the modeling community charged with improving 107 

the forecast of hurricane intensity, we will quantify the mixing length of horizontal eddy 108 
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momentum flux.  An outline of the remaining sections of this paper is as follows. In section 2, 109 

we give a brief description of data used and the analysis methodology. In section 3, we present 110 

the results of the data analysis. This is followed by Section 4, which discusses the main findings 111 

and the limitations of our results. Section 5 shortly summarizes the conclusion and future work. 112 

 113 

2.   Data and analysis method  114 

As mentioned earlier, the data used in this study are mainly from three research flights, one 115 

into category 4 Hurricane Allen (1980), one into category 5 Hurricane David (1979), and the 116 

other in category 5 Hurricane Hugo (1989). We analyzed the flight-level data from the period of 117 

missions before and during the eyewall penetrations when NOAA research aircraft were flown at 118 

nearly constant radar altitudes below 1 km.  Wind velocity data were corrected for aircraft 119 

motion, measured with an Inertial Navigation System (INS) and Global Positioning System 120 

(GPS).  Note that more advanced turbulence sensors were installed in N43RF, including the 121 

Rosemount turbulence gust probes in 1990s and Best aircraft turbulence (BAT) probe in 2000s 122 

(Drennan et al. 2007, French et al. 2007). Table 1 summarizes the measurements and calculations 123 

for the time intervals of the flights into Hurricanes Allen, David and Hugo.  Overall, the time-124 

averaged mean wind speeds obtained at flight level vary from 7 to 65 m s-1. 125 

The data from the flight into Hurricane Hugo on August 15, 1989 and from the flight into 126 

Hurricane Allen on August 6, 1980 have been described in detail by ZM11. Below we describe 127 

the data from the flight in Hurricane David (1979).  Hurricane David (1979) formed from a 128 

tropical wave on August 22 and developed into a tropical depression on August 25 in the central 129 

Atlantic.  David strengthened from a tropical storm on August 26, becoming a hurricane on 130 

August 27. As it moved west-northwestward, David rapidly intensified to a major hurricane on 131 
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August 27-28. After slightly weakening on August 29, David continued moving west-northwest, 132 

and became a Category 5 hurricane in the northeast Caribbean Sea. The peak intensity of 133 

Hurricane David reached maximum sustained winds of 78 m s-1 and minimum central pressure of 134 

924 mb (hPa) on August 30. Hurricane David continued as a Category 5 hurricane on August 31.  135 

   On August 30 1979, NOAA research aircraft N43RF penetrated the eyewall of the Cat 5 136 

Hurricane David (1979). Figure 1 summarizes the period of the flight during the low-level 137 

eyewall penetration mission. The aircraft altitude is nearly constant at 450 m, which is similar to 138 

the Hugo flight. Four eyewall penetrations were conducted, with peak flight-level wind speeds 139 

reaching 80 ms-1.  The gray lines in Fig. 1 at the bottom of each panel represent the time intervals 140 

selected to determine the scales of turbulent eddies and turbulence parameters. There is a total of 141 

thirteen time intervals (or `flux runs’) selected for analysis, four of which are in the eyewall 142 

region. Note that all of the time intervals are chosen according to the spectral analysis and quasi-143 

stationary criterion as discussed and justified in detail by ZM11.  144 

Similar to the two flights each in Hurricane Allen and Hugo, the flight into Hurricane 145 

David was mainly within the strong frictional inflow layer as discussed by ZM11. Upon 146 

analyzing hundreds of the dropsonde measurements in hurricanes, Zhang et al. (2011b) found 147 

recently that this layer of strong inflow adequately represents the top of the hurricane boundary 148 

layer, consistent with numerical and theoretical studies by Smith et al. (2009), Smith and 149 

Montgomery (2010) and Kepert (2011). On the basis of these recent works, the flights into 150 

Hurricanes Allen, David and Hugo are believed to be within the hurricane boundary layer as 151 

defined by the layer of strong inflow.  152 

In general, the turbulent eddy momentum flux is a second order tensor. Since ZM11 have 153 

examined already the vertical eddy momentum flux components, we confine our attention here to 154 
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the horizontal components of the eddy stress tensor. For the purpose of estimating horizontal 155 

mixing length, the horizontal momentum flux at flight level is evaluated for each time interval as 156 

follows: 157 

,                                                     (1) 158 

where prime indicates a turbulent fluctuation, v and u represent latitudinal and longitudinal 159 

component velocities, ρ the air density, and the overbar represents a time-average operator.  160 

Turbulent fluctuations are determined by detrending the time series of the three wind 161 

components using a least-square fitting method. A high-pass filter with a cutoff at 0.01 Hz was 162 

applied before the detrending. When we calculate ρ, we use the temperature measured by the 163 

Rosemont temperature sensor. It has been reported by Eastin et al. (2002a, b) that there is usually 164 

a wetting error in the temperature data during eyewall penetrations. The wetting error was 165 

corrected following the Eastin et al. method. The influence of the wetting error on the density 166 

calculation was found to be very small (~ 1%), nearly negligible.   167 

 The horizontal momentum flux is typically parameterized using the eddy diffusivity (Kh) 168 

in the form of  169 

            ,                                                        (2) 170 

where Sh is the strain rate of the mean flow (e.g., Stevens et al. 1999), which is defined as  171 

           ,                                                      (3) 172 

where x and y are the distances to the storm center in longitudinal and latitudinal directions, 173 

respectively.   174 

The horizontal eddy diffusivity can be calculated from (2) in the form of  175 

            .                                              (4) 176 
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The horizontal mixing length is then determined from the horizontal eddy diffusivity and 177 

the deformation, in the form of  178 

           .                                                     (5) 179 

Here, Dh is the horizontal deformation and is defined as 180 

           .                                (6) 181 

The first term in rhs of Eq. (6) represents deformation due to shearing, while the second term 182 

represents deformation due to stretching.  183 

              We note that in the above equations (1-6), the horizontal eddy momentum flux and 184 

strain rate can take on either positive or negative values around the storm, while the horizontal 185 

eddy diffusivity and mixing length must be positive for physical consistency. This sign 186 

convention for eddy diffusivity and mixing length is based on the K-theory.  Since the purpose of 187 

this paper is to estimate the horizontal eddy diffusivity and mixing length, we have used the 188 

magnitudes of the momentum flux and strain rate when calculating the eddy diffusivity (see Eq. 189 

4).  On the other hand, the signs of momentum flux and strain rate are reported (see Table 1) and 190 

discussed in the context of the applicability of K-theory in Sections 3 and 4. 191 

           The uncertainty involved in the estimation of horizontal eddy momentum flux is from two 192 

parts: 1) the temporal resolution of the data used in the calculation is 1 Hz, which generally will 193 

not capture the entire spectrum of the turbulent kinetic energy; 2) the legs determined for the flux 194 

calculation are relatively short (e.g., ~ 20 km) due to the quality control requirement for 195 

statistical stationarity. ZM11 discussed in detail how the 1 Hz data may under-sample the 196 

turbulent energy and fluxes.  197 

           In this work, we take the same approach as used by ZM11 to correct the 1 Hz data in 198 

Hurricanes Allen, David and Hugo using the 40 Hz data from Hurricane Frances (2004) at a 199 
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similar altitude. The data in Hurricane Frances were collected during the Coupled Boundary 200 

Layer Air-sea Transfer (CBLAST) Hurricane experiment (Black et al. 2007, Zhang et al. 2008). 201 

We found that the 1 Hz Frances data captures approximately 80% of the total horizontal eddy 202 

momentum flux (Fig.3). Therefore, in the analysis of the Allen, David and Hugo data, this 203 

empirical correction is applied also. In the correction, we have assumed that the turbulence 204 

characteristics at the vertical levels and locations in Frances, Hugo and Allen behave similarly. 205 

We recognize that there is an uncertainty in the correction, especially in the eyewall region 206 

where the 40 Hz data is unavailable, but this approach provides our best estimates. The short 207 

time interval used in the calculations can yield uncertainty of variance and covariance fluxes 208 

according to Mann and Lenschow (1994) and Mahrt (1998).  A detailed error analysis is given in 209 

section 3 where the main results are presented.   210 

In the calculation of the strain rate and deformation using Eqs (3) and (6), errors are 211 

introduced from the required cross-track derivatives since the data used here are from single 212 

flight legs. Since the aircraft horizontal track is never along the east or west direction, it is 213 

believed that errors due to the cross-track derivative are not overly significant, if homogeneity is 214 

assumed within the area that covers the flux run. Nonetheless, to improve the accuracy of our 215 

analysis we make the reasonable approximation of an axisymmetric mean vortex flow in order to 216 

evaluate the mean strain rate. We thus rewrite Eqs. (3) and (5) in the cylindrical coordinates, as 217 

follows: 218 

 ,              (7) 219 

,                       (8) 220 
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where vr and vt are the radial and tangential components of the velocity (assumed to depend on 221 

radius only), r is the radius to the storm center, and λ is the azimuth angle with λ=0 defined to be 222 

due east.  As all the flux runs selected in the analyses are nearly along the radial direction of the 223 

storm, the foregoing estimation of the mean strain rate and deformation avoids the problem of 224 

needing cross-track derivatives and for this reason is considered a more robust and defensible 225 

estimate of the mean strain rate and deformation than Eqs. (3) and (5). In the upcoming analyses 226 

we will henceforth use the cylindrical coordinate forms, Eqs. (7) and (8). 227 

 228 

3.  Results 229 

 The calculations of horizontal eddy momentum flux, eddy diffusivity and mixing length 230 

are summarized in Tables 1 for the Allen, David and Hugo data. The calculations of the 231 

turbulence parameters outside the eyewalls of these storms show good agreement with those 232 

using the 40 Hz Frances data. This agreement suggests that the method employed for correcting 233 

the 1 Hz data is sound. The mean horizontal momentum flux for the eyewall penetration legs1 is 234 

approximately 1.5 m2 s-2 with a flight-level mean wind speed of 52 m s-1. Broadly speaking, the 235 

horizontal momentum fluxes in the eyewall legs are generally 5 times those found in the outer 236 

core runs.   237 

Figure 4 shows the horizontal momentum flux as a function of the flight-level mean wind 238 

speed using the data from Hurricanes Allen, David and Hugo.  Also shown are the values of 239 

horizontal momentum fluxes determined from the 40 Hz data obtained in Hurricane Frances. It is 240 

evident that the horizontal momentum flux increases with the increasing flight-level wind speed.  241 

                                                
1 Here the eyewall region is defined as the area within 30 km of the radius of maximum wind.  
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This wind-speed dependence of horizontal momentum flux is qualitatively similar to the wind-242 

speed dependence of vertical momentum flux reported by ZM11.  243 

It appears that the magnitude of horizontal momentum flux becomes roughly comparable 244 

to the vertical momentum flux close to and inside the eyewall region (Fig. 5). In the corner-flow 245 

region of the vortex where the mean inflow is decelerating and turning upwards and the radial 246 

and height scales become comparable, this suggests that the horizontal mixing may become non-247 

negligible compared to the vertical mixing processes in the underlying boundary layer dynamics 248 

of the vortex. The implication is that the divergence of the horizontal eddy momentum flux 249 

should not be neglected in theory or hurricane models.  An estimate of the horizontal eddy 250 

diffusivity will follow after error sources are considered.  251 

As mentioned in Section 2, there are sources of error that are involved in the flux 252 

estimation.  Typically, two types of errors arise in the flux calculation using the eddy-correlation 253 

method: the systematic error (erS), which is linked to the loss due to high-pass filtering; and 254 

random error (erR), which is due to the fact that a flux run is a finite sample of a random process. 255 

We calculate the systematic error for the flux estimation following Lenschow et al. (1994) in the 256 

form of: 257 

             erS = (F – Ff) / F,                                  (7) 258 

where Ff is the flux after application of the high pass filter in the frequency domain. The 259 

systematic error is found to be 31%, which is typical for aircraft observations especially at these 260 

altitudes (e.g. Bernard-Trottolo et al. 2003). We calculate the random error following Vickers 261 

and Mahrt (1997) in the form of:  262 

              erR=  ,                             (8) 263 
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where N is the number of observations. The random error is found to be 25%, which is in 264 

agreement with values found in the previous aircraft observations (e.g., Mann and Leschow 1994, 265 

Bernard-Trottolo et al. 2003).  Because all of the flux runs were checked thoroughly using the 266 

‘ogive’ criterion and spectral analysis method as mentioned in Section 3 (and detailed in ZM11), 267 

all of the low-frequency scales of turbulent eddies are believed to be captured. We have 268 

corrected also the missing high frequency part of the energy based on the Frances data. Overall, 269 

it is thought that the uncertainty of the estimated horizontal momentum flux is around 30%.  270 

  Figure 6 shows the horizontal eddy diffusivity derived from Equation (4) as a function 271 

of the mean flight-level wind speed, using the Allen, David and Hugo data, as well as the 40 Hz 272 

Frances data. Again, we find that the Allen, David and Hugo data in the outer core region are 273 

consistent with the Frances data, providing an independent check of the validity of the bias 274 

correction. In the eyewall region, the average horizontal eddy diffusivity is approximately 1500 275 

m2 s-1, which is slightly more than an order of magnitude greater than the vertical eddy 276 

diffusivity as given by ZM11. Considering all the data investigated in this work, it is evident that 277 

the horizontal eddy diffusivity in the eyewall region is nearly twice as large as that found in the 278 

outer core region. Overall, it is found that the eddy diffusivity tends to increase with increasing 279 

mean flight-level wind speed.  280 

Adopting a K theory closure formulation, the horizontal mixing length is computed from 281 

the horizontal eddy diffusivity and the deformation following Eq. (5). Figure 7 shows the 282 

horizontal mixing length as a function of mean flight-level wind speed for all of the flux runs. 283 

The average horizontal mixing length of the eyewall legs is approximately 750 m, corresponding 284 

to a mean wind speed of 52 ms-1. The mixing length of the outer-core legs is approximately 630 285 
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m. It appears, then, that the horizontal mixing length has little dependence on the mean flight-286 

level wind speed, with only a slight increasing trend with wind speed.   287 

           In the calculation of the horizontal eddy diffusivity, the determination of the mean strain 288 

rate term (Sh) is required. In the calculation of the horizontal mixing length, the calculation of the 289 

mean deformation (Dh) is required. Here, we calculate Sh and Dh using the flight-level wind data 290 

that is smoothed by a 100s running mean filter. This method is the same as used by Marks et al. 291 

(2008) for the determination of the mean vortex of Hurricane Hugo (1989). In the calculation of 292 

Sh and Dh for each flux run, we take the average value from all the observations in each leg. The 293 

uncertainty in the calculation of Sh and Dh comes mainly from the distance from the storm 294 

center. We have used the algorithm given by Willoughby and Chelmow (1980) to determine the 295 

storm center using the flight-level wind data. As discussed in the foregoing section, we have also 296 

corrected the cross-track error by rewriting Sh and Dh in the cylindrical coordinate system and 297 

assuming an axisymmetric mean vortex flow to evaluate the respective derivatives. The 298 

uncertainties in the estimates of Sh and Dh are thought to be within 20%.  Overall, the 299 

uncertainties of the horizontal eddy diffusivity and mixing length are thought to be 50%.  It is 300 

worthwhile to note that calculations of Sh and Dh using the two methods discussed in Section 2 301 

are in general agreement (not shown). However, calculating Sh and Dh in the Cartesian 302 

coordinate system (Eqs. (3) and (5)) introduces much larger scatter than in the Cylindrical 303 

coordinate system (Eqs. (7) and (8) ), with some unreasonably large values of Kh and Lh.   304 

 305 

 4. Discussion  306 

In this study, we have extended the analyses of ZM11 examining the turbulence 307 

characteristics in the boundary layer of Hurricanes Allen (1980) and Hugo (1989). To 308 



 14 

supplement the data base, we added an analysis of a similar dataset collected during the low-309 

level eyewall penetrations of category 5 Hurricane David (1979). Estimates of the horizontal 310 

eddy momentum flux, horizontal eddy diffusivity, and horizontal mixing length were presented 311 

for the legs before and during the eyewall penetrations. The horizontal eddy momentum flux for 312 

the eyewall legs were found to be much larger than those estimated for the legs outside the 313 

eyewall at the same level. It was found also that the horizontal momentum flux increases with 314 

wind speed, qualitatively similar to the wind-speed dependence of the vertical momentum flux as 315 

presented by ZM11.  316 

In the eyewall region, where the corresponding wind speed is equal to or greater than 52 317 

ms-1, the mean horizontal eddy diffusivity is found to be on the order of 1500 m2 s-1, which is 318 

approximately 15 times that of the vertical eddy diffusivity reported in ZM11. The horizontal 319 

eddy diffusivity is found to increase somewhat with wind speed. The horizontal mixing length is 320 

approximately 750 m on average in the eyewall with a slightly smaller value (~630 m) in the 321 

outer core. There is a weak increase of the horizontal mixing length with wind speed. From both 322 

theoretical and practical perspectives, the observational evidence suggests that a constant 323 

horizontal mixing length may be adequate in simple theoretical models and in numerical 324 

hurricane models.  The horizontal mixing length is approximately seven times the vertical 325 

mixing length.  326 

Because the radial and vertical scales become comparable in the corner flow region of a 327 

major hurricane eyewall, our results suggest that the flux divergence of the horizontal eddy 328 

momentum flux will become non-negligible in the boundary layer dynamics for this region of the 329 

storm. Although these conclusions are consistent with the statements of BR09, it must be noted 330 

that our estimated horizontal mixing length is smaller than the value of 1500 m suggested by 331 
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BR09 using an axisymmetric numerical model. This discrepancy can be partly explained by the 332 

limitation of a 2D axisymmetric model. As stated by BR09 (see their page 1776), “axisymmetric 333 

numerical models cannot resolve any three-dimensional motions.” The unresolved three-334 

dimensional turbulence, including Kolmogorov and mesoscale turbulence associated with 335 

rotating deep convection, eyewall mesovortices and vortex Rossby waves (Rotunno and Emanuel 336 

1987, Nguyen et al. 2008, Schubert et al. 1999, Montgomery et al. 2002, BR09) may be one 337 

reason for the above discrepancy. Cognizant of the limitations of the 2D (axisymmetric) model, 338 

Bryan, Rotunno and their colleagues (Bryan et al. 2010) suggested a somewhat smaller 339 

horizontal mixing length (~1000 m) to be the optimal length scale in order for that in their 3D 340 

simulations to match observed hurricane intensities. Their recommended mixing length from the 341 

3D simulations is closer to our observational estimate compared to their 2D simulations.  342 

We note that the data used in our analyses are based on flight level data at ~ 500 m altitude, 343 

which is close to the height of maximum wind speed. The height of the maximum tangential 344 

wind speed is generally slightly higher (Zhang et al. 2011b). A rough estimate of the azimuthal 345 

tangential wind speed using all the eyewall legs considered here is on the order of 52 m s-1, 346 

which is smaller than the one (~70 m s-1) used by BR09 and Bryan et al. (2010) as the baseline of 347 

their numerical simulation for recommending the horizontal mixing length. Given the tendency 348 

for the horizontal mixing length to increase slightly with wind speed, a 1000 m horizontal mixing 349 

length would appear to be a reasonable estimate at higher wind speeds. Undoubtedly, more 350 

observations at higher wind speeds and at different altitudes in intense eyewalls are required for 351 

a more complete understanding and representation of the turbulent mixing problem in hurricanes.   352 

In our analysis of the observational turbulence data, we have recalled the fact that the 353 

mixing length is a virtual length scale and is generally different from the scale of turbulent eddies 354 



 16 

containing most of the turbulent kinetic energy and momentum fluxes. In numerical models, for 355 

example, the mixing length concept is used to link the turbulent fluxes to more easily measured 356 

and resolved variables, such as wind shear and/or deformation rate (e.g., Pielke and Mahrer, 357 

1975). In the real world, such length scales should be determined when both flux and mean 358 

profile data are available. On the other hand, the scales of dominant eddies can be determined 359 

using a spectral analysis (e.g. Zhang et al. 2009, Zhang 2010, ZM11).  360 

As an example, Fig. 8a shows the cospectra of the horizontal momentum flux for one of the 361 

flux runs that penetrated the eyewall of category 5 Hurricane David.  The corresponding 362 

cumulative sum or ogives of the cospectrum of horizontal momentum flux is shown in Figs. 8b. 363 

The dominant peaks in the cospectral plots are generally associated with turbulent eddies that 364 

contain most of the momentum flux. As in ZM11, the scale of the dominant eddies can be 365 

estimated from the reciprocal of the pertinent wavenumber. From Fig. 8, the peak of the uv 366 

cospectrum occurs at a wavenumber of approximately 0.95 x 10-3 m-1 and this wavenumber 367 

corresponds to a length scale of approximately 1100 m. Similar results are found for the other 368 

eyewall flux runs, and also for the outer-core runs. Overall, we find that the mean length scale of 369 

the dominant eddies transporting the horizontal momentum flux is approximately 1130 m on 370 

average, which is nearly 1.6 times the average value of the horizontal mixing length. Although 371 

the energy containing scale is almost within the error bar of the horizontal mixing length, 372 

statistical analysis (t-test) shows that the difference between the mean mixing length and 373 

energy/flux containing scale is significantly different. The distinction between these two scales is 374 

a useful reminder for the modeling community on the representation of small-scale turbulence in 375 

hurricanes.   376 
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            We note also that the results presented here are framed within the context of simple K-377 

theory and assume that such an approach is valid in hurricane conditions. Many numerical 378 

models of hurricanes (including the models employed by Bryan and Rotunno (2009, 2010) and 379 

Nguyen et al. (2008)) adopt a K-theory formulation for the turbulence closure problem. When 380 

correlating the momentum flux and the strain rate, we found that nearly 70% of the data have the 381 

same signs, confirming the assumed down-gradient character between the horizontal eddy 382 

momentum flux and the mean strain rate in K-theory (see Table 1). Although the work presented 383 

here broadly supports the hypothesis that simple K-theory is valid in intense hurricanes, further 384 

analyses are required to evaluate the applicability of K-theory at different altitudes. Of course, if 385 

a higher order turbulence parameterization scheme is used in a hurricane model, then still higher- 386 

order statistical moments of the turbulence are required. The latter alternative goes far beyond 387 

the scope of the current study. Finally, it should be remembered that a hurricane boundary layer 388 

near the eyewall region is far from a homogeneous regime.  However, the horizontal 389 

homogeneity condition is necessary within the surface layer similarity theory and boundary layer 390 

K-theory concept.  391 

 392 

5. Conclusions 393 

In summary, our study is the first attempt to estimate the horizontal diffusivity and mixing 394 

length in the very high wind regime of a hurricane vortex using observational data. We believe 395 

that the results presented herein should offer useful guidance in both theoretical studies and 396 

numerical weather prediction efforts aimed at improving the understanding and forecast of 397 

hurricane intensity. The Allen, David and Hugo flight-level datasets analyzed in this study are 398 

believed to be the few available in-situ observations that were taken near or below 500 m during 399 
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the eyewall penetration of a Category 4 and 5 storms. It is unlikely that we may see such data in 400 

the near future because of safety constraints for manned aircraft to be flown at such low altitudes 401 

again in the boundary layer.  402 

Our future work aims to increase the sampling size of the analysis of turbulent flow in the 403 

eyewall region by searching the 30-year HRD’s aircraft database for more low-level flights than 404 

those used in this study. To more completely quantify turbulence characteristics in the intense 405 

eyewall and their impact on our understanding and prediction of hurricane intensification and 406 

maximum intensity, a focused field program is recommended also, possibly with unmanned 407 

platforms employing advanced turbulent sensors on board or using advanced remote sensing 408 

techniques.   409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 
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  Figure captions: 597 

Figure 1:   Aircraft altitude (a) and flight-level wind speed (b) during Hurricane David on 6 598 

August 1980, 8-12 UTC. The gray lines denote the flux runs investigated herein.  599 

Figure 2: Aircraft tracks for the research flights into Hurricanes Allen (a), David (b), Hugo (c), 600 

and Frances (d).  601 

Figure 3: Comparison of the 40 Hz (black) and 1 Hz (blue) wind data. (a) Time series 602 

comparison from a typical flux run at 460 m on 1 Sep 2004 in hurricane Frances. (b) Frequency 603 

spectra from the flux run of (a). (c) Frequency cospectra of the horizontal momentum flux. (d) 604 

Cumulative sum or ogive of the spectra. (e) Cumulative sum or ogive of cospectra of the 605 

horizontal momentum flux.   606 

Figure 4: Horizontal momentum flux (|Fh|) as a function of the mean wind speed at the flight 607 

level for all flux runs in Hurricanes Allen (Δ), David (x), Hugo (o) and Frances (+).The sign of 608 

the momentum flux is shown in Table 1.  609 

Figure 5: Comparison of the magnitudes of the horizontal (|Fh|) and vertical (|τ|) momentum 610 

fluxes. Symbols are as in Fig. 4. 611 

Figure 6: Horizontal eddy diffusivity (Kh) as a function of mean wind speed at flight level for all 612 

flux runs in Hurricanes Allen (Δ), David (x), Hugo (o) and Frances (+).  613 

Figure 7: Horizontal mixing length (Lh) as a function of mean wind speed at flight level for all  614 

flux runs in Hurricanes Allen (Δ), David (x), Hugo (o) and Frances (+). The thick black curve 615 

represents the bin-averaged values with 95% confidence interval. The bin width is 15 m s-1 and 616 

the averaging begins at 7 m s-1. The grey dashed line shows the mean value of all the data. The 617 

black * shows the average value of the data outside the eyewall region, while the black diamond 618 

shows the average value of the data for the eyewall legs.  619 
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Figure 8: Horizontal momentum flux cospectra (a) and the cumulative sum of the cospectra for a 620 

typical eyewall flux run.  621 
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Table Caption: 650 

 651 
Table1: Summary of data and calculations for all flux runs presented here.  The variables are 652 

storm name, date, start time (Ts in UTC hour and minute), end time (Tnd), mean altitude (z in m), 653 

mean flight-level wind speed (ws in ms-1), horizontal eddy momentum flux (Fh in N m-2), mean 654 

strain rate (Sh in 10-3 s-1), mean deformation (Dh in 10-3 s-1), horizontal eddy diffusivity (Kh in m2 655 

s-1), and horizontal mixing length (Lh  in m).  Signs of momentum flux and strain rate are 656 

included.  657 
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 678 
Figure 1:   Aircraft altitude (a) and flight-level wind speed (b) during Hurricane David on 6 679 

August 1980, 8-12 UTC. The gray lines denote the flux runs investigated herein.  680 
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 690 
Figure 2: Aircraft tracks for the research flights into Hurricanes Allen (a), David (b), Hugo (c), 691 

and Frances (d).  692 
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 703 
Figure 3: Comparison of the 40 Hz (black) and 1 Hz (blue) wind data. (a) Time series 704 

comparison from a typical flux run at 460 m on 1 Sep 2004 in hurricane Frances. (b) Frequency 705 

spectra from the flux run of (a). (c) Frequency cospectra of the horizontal momentum flux. (d) 706 

Cumulative sum or ogive of the spectra. (e) Cumulative sum or ogive of cospectra of the 707 

horizontal momentum flux.   708 
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 711 
Figure 4: Horizontal momentum flux (|Fh|) as a function of the mean wind speed at the flight 712 

level for all flux runs in Hurricanes Allen (Δ), David (x), Hugo (o) and Frances (+). The sign of 713 

the momentum flux is shown in Table 1.  714 
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 725 

 726 
 727 

Figure 5: Comparison of the magnitudes of the horizontal (|Fh|) and vertical (|τ|) momentum 728 

fluxes. Symbols are as in Fig. 4. 729 
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 739 
Figure 6: Horizontal eddy diffusivity (Kh) as a function of mean wind speed at flight level for all 740 

flux runs in Hurricanes Allen (Δ), David (x), Hugo (o) and Frances (+).  741 
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 753 
Figure 7: Horizontal mixing length (Lh) as a function of mean wind speed at flight level for all  754 

flux runs in Hurricanes Allen (Δ), David (x), Hugo (o) and Frances (+). The thick black curve 755 

represents the bin-averaged values with 95% confidence interval. The bin width is 15 m s-1 and 756 

the averaging begins at 7 m s-1. The grey dashed line shows the mean value of all the data. The 757 

black * shows the average value of the data outside the eyewall region, while the black diamond 758 

shows the average value of the data for the eyewall legs.  759 
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 766 
Figure 8: Horizontal momentum flux cospectra (a) and the cumulative sum of the cospectra for a 767 

typical eyewall flux run.  768 
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Table1: Summary of data and calculations for all flux runs presented here.  The variables are 781 
storm name, date, start time (Ts in UTC hour and minute), end time (Tnd), mean altitude (z in m), 782 
mean flight-level wind speed (ws in ms-1), horizontal eddy momentum flux (Fh in N m-2), mean 783 
strain rate (Sh in 10-3 s-1), mean deformation (Dh in 10-3 s-1), horizontal eddy diffusivity (Kh in m2 784 
s-1), and horizontal mixing length (Lh  in m). Signs of momentum flux and strain rate are 785 
included.  786 
 787 

Storm Name Date Ts Tend z ws Fh Sh Dh Kh Lh 

David 19790830 85837 90156 504.79 37.32 0.63 0.21 3.74 2680.30 846.11 
David 19790830 90157 90516 488.01 37.81 0.57 0.98 6.07 515.85 291.60 
David 19790830 91356 91715 486.77 35.59 -0.68 -0.17 1.22 3434.11 1676.11 
David 19790830 91716 92035 481.54 30.23 -0.95 -0.44 0.94 1908.33 1426.23 
David 19790830 92036 92355 481.72 28.20 -0.40 -0.36 0.95 980.13 1013.64 
David 19790830 93036 93355 471.58 21.51 -0.30 -0.69 2.35 378.46 401.30 
David 19790830 93356 93715 471.03 17.35 -0.12 -10.12 5.42 10.60 44.24 
David 19790830 100036 100355 465.23 21.27 -0.03 0.04 3.11 619.77 446.32 
David 19790830 104036 104355 459.25 35.72 -0.17 0.18 1.67 813.04 698.64 
David 19790830 112546 112905 472.86 16.49 -0.04 0.07 2.20 488.90 470.90 
David 19790830 83047 83346 417.99 45.74 0.83 0.24 1.39 3083.53 1492.08 
David 19790830 83437 83726 451.76 42.65 -4.33 1.50 2.63 2571.51 987.99 
David 19790830 84117 84416 558.78 64.27 0.34 2.59 3.78 115.83 174.94 
David 19790830 110306 110605 464.93 63.32 1.86 0.88 3.94 1882.36 691.49 
David 19790830 111116 111435 486.56 55.30 1.44 -0.53 1.64 2403.38 1211.56 
Allen 19800806 150450 150809 482.61 24.48 -0.12 -0.24 0.83 445.02 730.35 
Allen 19800806 150820 151139 442.64 25.08 -0.05 0.12 1.06 400.51 615.16 
Allen 19800806 153530 153849 473.05 18.57 -0.09 0.12 0.84 703.39 914.32 
Allen 19800806 154210 154529 497.82 13.35 0.01 0.08 0.78 159.51 451.70 
Allen 19800806 154610 154909 498.52 11.02 -0.16 -0.54 1.08 256.50 486.57 
Allen 19800806 154950 155329 498.27 7.17 -0.00 -0.53 1.29 4.53 59.13 
Allen 19800806 161250 161609 422.07 19.27 -0.45 0.75 1.26 531.64 648.58 
Allen 19800806 164820 165139 847.66 40.15 0.89 -0.30 3.77 2609.63 832.02 
Allen 19800806 151600 151939 484.59 39.72 0.09 -1.18 2.41 63.88 162.73 
Allen 19800806 152820 153319 576.14 37.94 -1.02 -0.50 1.88 1801.93 978.07 
Allen 19800806 163220 163719 844.92 64.19 1.57 1.82 3.08 769.74 500.22 
Hugo 19890815 172002 172401 458.78 28.07 -0.20 -0.54 1.23 331.39 519.61 
Hugo 19890815 172450 172741 437.43 57.94 -3.17 -2.63 4.37 1072.55 495.52 

Frances 20040901 174040 174444 481.27 20.90 -0.08 -0.21 1.56 318.11 451.36 
Frances 20040901 174444 174848 448.72 20.24 -0.16 -0.18 2.95 786.70 516.51 
Frances 20040901 175353 175757 453.69 22.09 -0.28 1.29 3.52 192.25 233.61 
Frances 20040901 175959 180202 458.11 20.66 -0.13 -0.16 1.50 720.91 694.08 
Frances 20040901 190505 190808 553.08 30.79 0.06 -0.52 0.77 101.68 362.76 
Frances 20040901 191212 191515 452.41 33.21 0.13 -0.26 0.86 435.68 711.75 

 788 


